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PRECISE TIME-STEP INTEGRATION FOR THE DYNAMIC RESPONSE
OF A CONTINUOUS BEAM UNDER MOVING LOADS
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Hong Kong, People1s Republic of China. E-mail: cesslaw@polyu.edu.hk

(Received 27 June 2000)

The dynamic response of a non-uniform continuous Euler}Bernoulli beam is analyzed
with Hamilton's principle and the eigenpairs are obtained by the Ritz method.
A high-precision integration method is used to calculate the dynamic responses of this beam.
Numerical results show that the method is more accurate in the prediction of the vibration
responses under the moving loads than the Newmark method.
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1. INTRODUCTION

The dynamic response of a beam under moving load has been widely studied. Wu and Dai
[1] used the transfer matrix method and mode superposition technique to determine the
dynamic responses of multi-span non-uniform beams under moving loads. Lee [2]
considered the intermediate point supports in the form of linear springs of large sti!ness.
Richer et al. [3] investigated the continuum discretization for "nite element models in
analyzing a moving load on an elastic beam. Henchi and Fafard [4] used an exact dynamic
sti!ness element in the "nite element approximation to study the dynamic response of
multi-span structures under a convoy of moving loads. A dynamic model coupled with
a fast Fourier transformation algorithm is developed. The vibration of a multi-span
non-uniform beam subjected to moving loads is analyzed by using modi"ed beam vibration
functions as the assumed modes [5].

The central di!erence, Newmark and Wilson-h methods are used in the computation in
all the above works. This paper applies the precise time-step integration technique [6] to
study the dynamic responses of a non-uniform continuous beam under a system of moving
loads. The analysis is based on Hamilton's principle with the intermediate point supports
represented by very sti! linear springs. The eigenpairs are calculated with a new approach
using the Ritz method. Numerical results are presented for loads moving with constant or
varying speed across the beam. Comparison with the exact solution and the results by
Zheng et al. [5] shows that this technique is accurate and practical.

2. EQUATIONS OF MOTION

Figure 1 shows a continuous Euler}Bernoulli beam with (Q!1) intermediate points
supports under N

f
moving loads. The beam is constrained at these supports. The loads P

s
(t)

(s"1, 2,2 , N
f
) are moving at a prescribed velocity v along the axial direction from left to

right. The initial location of the "rst moving load is assumed at the left end of the beam and
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Figure 1. A continuous beam with (Q!1) intermediate point supports under N
f

moving forces.
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l
s

is the distance between P
s
(t) and P

1
(t). The load locations xL

s
(t) (s"1, 2,2, N

f
) are

described as follows when the moving speed is constant

xL
s
(t)"vt!l

s
(l
s
/v(t((¸#l

s
)/v), (1)

where ¸ is the total length of the beam. For a more general formulation when the loads are
moving at varying speed with a constant acceleration, the load locations can be written as
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s
(t)"v

0
t#1

2
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t
s1
"(Jv2
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0
)/a, (2)

t
s2
"(Jv2

0
#2a (l

s
#¸)!v

0
)/a,

where t
s1

, t
s2

are the time instances when P
s
(t) gets on and o! the beam respectively, a is the

constant acceleration and v
0

is the initial velocity of the group of forces.
By separation of variables, the vertical deformation of the beam y (x, t) can be expressed

as

y (x, t)"
n
+
i/1

q
i
(t)>

i
(x) M>

i
(x), i"1, 2,2, nN, (3)

where M>
i
(x), i"1, 2,2, nN are the vibration modes which satisfy the boundary conditions

and Mq
i
(t), i"1,2,2, nN are the generalized co-ordinates.

From the Euler}Lagrange equation of the load on beam system, the equation of motion
of a damped system can be written as follows:

n
+
j/1

m
ij

qK
j
(t)#

n
+
j/1

C
ij
qR
j
(t)#

n
+
j/1

k
ij
q
j
(t)"f

i
(t) (i"1, 2,2 , n), (4)

where

m
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"P

L
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(x) dx,
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"k

Q~1
+
l/1

>
i
(x

l
)>

j
(x

l
), (5)
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k
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+
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P
l
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i
(xL

l
(t)) (i"1, 2,2, n, j"1, 2,2 , n)

and o is the density, A(x) is the cross-sectional area, E is Young's modulus, I(x) is the
moment of inertia of the beam cross-section, x

i
(i"0, 1, 2,2, Q) are the co-ordinates of

intermediate point supports or end supports, k is the vertical sti!ness used to model the
point constraints and C

ij
is the damping coe$cient.

Equation (4) can also be rewritten as

MqK (t)#CqR (t)#Kq(t)"F(t), (6)

where

M"Mm
ij
, i"1, 2,2 , n; j"1, 2,2, nN, K"Mk

ij
, i"1, 2,2 , n; j"1, 2,2 , nN,

C"MC
ij
, i"1, 2,2, n; j"1, 2,2 , nN, q(t)"Mq

1
(t), q

2
(t),2, q

n
(t)N, (7)

F(t)"M f
1
(t), f

2
(t) ,2 , f

n
(t)N.

3. NATURAL FREQUENCIES AND THE ASSUMED MODE SHAPES

The maximum potential and the maximum kinetic energies can be written by applying
the Ritz method as

;
max

"1
2 P

L

0

EI (x) (>A
i
(x))2dx,

¹
max

"

u2

2 P
L

0
oA(x) (>(x))2dx,

(8)

in which

u2"
E

o
:L
0

I(x) (>A(x))2dx

:L
0

A(x) (>(x))2dx
, (9)

where u is the angular frequency. For a single-span simply supported beam with uniform
cross-section, the vibration functions are

>
Ui

(x)"sinA
inx

¸ B (i"1, 2,2 , n), (10)

where n is the number of vibration modes. A previous work [7] models the de#ection curve
in terms of a polynomial function. A new form for the de#ection curve is assumed in this
work which leads to a very simple solution of the eigenpairs

>(x)"
n
+
i/1

a
i
>
Ui

(x), (11)

where Ma
i
"1, 2,2, nN are constant coe$cients. Equation (11) can be proved to satisfy the

boundary conditions of the non-uniform beam. The constant Ma
i
, i"1, 2,2, nN can be
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found to make the integral

Z"P
L

0

[EI(x) (>A (x))2!u2oA(x) (>(x))2] dx (12)

a minimum by substituting equations (11) and (5) into equation (12), and letting

LZ

La
i

"0 (i"1, 2,2 , n),

we have

(Ko!u2Mo)a"0, (13)

where Ko and Mo are n]n matrices. a"Ma
1
, a

2
,2, a

n
N is an n]1 vector, and the matrix

components ko
ij

and mo
ij

are

ko
ij
"P

L

0

EI(x)>A
Ui

(x)>A
Uj

(x) dx

mo
ij
"P

L

0

oA (x)>
Ui

(x)>
Uj

(x) dx

(i"1, 2,2, n, j"1, 2,2 , n). (14)

Equation (13) can therefore be written as

(B!u2I)a@"0, (15)

where

B"KoMo~1, a@"Moa. (16)

Here u2, a@ are determined as the eigenvalues and the eigenvectors of matrix B in equation
(15). Then a can be calculated from equation (16), and hence >(x) from equation (11). The
natural frequencies and mode shape functions are therefore determined. It is noted that
equation (16) gives the exact solution on the eigenpairs for a uniform continuous beam.

4. THE HIGH-PRECISION INTEGRATION SCHEME

According to the precise time-step integration method [6], the equation of motion of the
beam in equation (6) can be written as

uR "Hu#f, (17)

where u is the response vector of size 2n]1, H is a 2n]2n matrix, and f is the force vector of
size 2n]1, with

u"C
q (t)

p (t)D ,
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!

M~1C

2
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!AK!

CM~1C

4 B !

CM~1

2

, (18)
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2
.

Matrix A(t) is obtained from equation (11). Equation (17) can be written into discrete
equations using the exponential matrix representation. Integrating equation (17), we can
have

u(t)"eH(t~t0)u(t
0
)#P

t

l0

eH(t~q) f (q) dq . (19)

Expressing equation (19) in discrete form

u(( j#1) h)"eHhu( jh)#P
(j`1)h

jh

eH((j`1)h~q) f (q) dq, (20)

where h is the time step of integration. The force f (q) is assumed to be constant within the
time interval from jh to ( j#1)h,

u (( j#1)h)"eHhu( jh)#CP
h

0

eHq{dq@D f ( jh) (21)

"eHhu ( jh)#H~1 [eHh!I] f ( jh),

and the "nal discrete model for the ( j#1)th step is rewritten as

u
j`1

"exp (Hh)u
j
#H~1 (exp (Hh)!I) f

j
( j"0, 1, 2,2). (22)

The precision of integration depends on the accuracy of exp (Hh). The 2N algorithm
presented by Zhong et al. [8] is used and exp (Hh) has the form

exp (Hh)"CexpAH
h

N
t
BD

Nt

(23)
"[exp (HDt)]Ni,

where Dt"h/N
t
, N

t
"2N and N can be any positive integer. Since h is not large and Dt

would be extremely small, a truncated Taylor expansion of exp (HDt) may be used.
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(24)
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O
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where
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(HDt)3

3!
#

(HDt)4

4!
,

and R
i
at the ith step of computation can be proved to take the form

R
i
"2R

i~1
#R

i~1
R

i~1
(i"1, 2,2, N).

Then

exp (Hh)"[exp (HDt)]Nt

(25)
+I#R

N

The term exp (Hh) can be computed from equations (24) and (25), and the vibration response
can be calculated from equation (22). The computed results are compared with those from
the Newmark method using the same time step h in equation (23), and the number of data
points in the computation should be a multiple of two. It is noted that the accuracy of
exp (Hh) and the vibration response u depend on the size of time step Dt"h/N

t
adopted,

and there is no convergence error involved in the "nal results.

5. SIMULATION AND RESULTS

5.1. RELIABILITY AND ACCURACY OF THE PROPOSED METHOD

A simply supported uniform beam subjected to the excitation of a moving load is
considered. The cross-sectional area and the material density of the beam are, respectively,
1)146]10~3 m2 and 7700 kg/m3. The overall length is one meter and Young's modulus is
2)07]10~5 MPa. The speed of the moving load is 17)3 m/s. Computation of the responses
was done using the "rst 12 vibration modes with the integration time step h equal to
9)0315]10~4 s. The number of data used is 64 and N"9. Dt equals h/29"1)76396]
10~6 s, and the Taylor series expansion for exp (HDt) contains in"nitesimal approximation
errors. Figure 2 shows the results obtained from using the proposed method, the Newmark
method and the exact solution [9]. The de#ection under the moving load has been
normalized with the static de#ection when the load is at midspan. A comparison of the
computation error and computer time from the precise method and the Newmark method
is also presented in Table 1. The computation error is de"ned as

Error"
Ex!x

exact
E

Ex
exact

E
100%,

where x and x
exact

are the computed result and the exact solution respectively.
Both the curves from the precise integration method and the Newmark method closely

match with the exact solution. The computation errors are almost the same for both
methods as seen in Table 1. Table 1 also shows that the computation errors from both
methods are comparable for di!erent time steps of integration, but the computer time
required in the precise method is only one-quarter of that in the Newmark method. The
precise method also gives a larger error than the Newmark method when a very large time
step is used, as seen in the last row of Table 1. This would indicate that a large time step
should go together with a larger N value in the computation.



Figure 2. De#ection of beam at midspan under the moving load:**, exact solution; } } }, precise integration;
) ) ) ), Newmark method.

TABLE 1

Comparison between two Methods

No. of data N Time step(s) Precise method Newmark method

Error (%) Time (s) Error (%) Time (s)

500 9 1)1561]10~4 1)4910 2)25 1)5250 10)65
200 9 2)8902]10~4 1)5411 0)99 1)6806 4)01
128 9 4)5159]10~4 1)6078 0)60 1)9091 2)52
64 9 9)0318]10~4 2)5074 0)25 2)8021 1)31
32 9 0)0018 7)2589 0)16 4)9796 0)66
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5.2. VIBRATION RESPONSE OF MULTI-SPAN NON-UNIFORM BEAM UNDER MOVING LOADS

Consider the problem of moving loads on a three-span girder of variable depth as shown
in Figure 3. The material density and Young's modulus are, respectively, 2400 kg/m3 and
30 000 MPa. The group of forces consists of four forces each of 450 kN with a spacing as
shown in Figure 3, and it travels at a constant speed of 17 m/s across the bridge. The vertical
sti!ness representing the intermediate supports is taken as 1)0]1016 kNm. The "rst 12
modes are used in the calculation with the integration time step equal to 1)47058]10~2 s.
256 data are used with N"8 which cover the duration when the forces are on the beam.
Lee's method [2] is modi"ed to solve this problem with a non-uniform beam. The
de#ections at the middle of the three spans obtained from the modi"ed Lee's method,
Zheng's method [5] and the present method are shown in Figure 4. They are all very close
to each other, indicating that the accuracy of the proposed approach is comparable to those
in existing methods.

6. CONCLUSIONS

A method is proposed to study the dynamic responses of a non-uniform continuous beam
under the action of moving forces. A new approach to determine the eigenpairs using the
Ritz method is proposed. A precise integration method is applied to obtain the response
time histories in which a more economical computer e!ort could be achieved with the same
time step of integration compared with the Newmark method.



Figure 3. Continuous girder with varying depth.

Figure 4. De#ection at the middle of the three spans:**, modi"ed Lee's method; } } }, precise integration; ) ) ) ),
Zheng's method.
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